

© Copyright Nihon Suido Consultants Co., Ltd.

1

Mihon Suido Consultants Co., Ltd.

Agenda

- Introduction
- Background and Objective
 - Significance of Modeling Approach
 - Review of a Water Safety Plan
- Methodology
 - Model Framework and prioritized model
- Results and Discussion
 - Simulation Results for Present Status
 - Evaluation of Countermeasures
- Conclusion and Recommendation

Who We Are?

(Nihon Suido Consultants Co., Ltd.

Water and Environmental Consultants

- ✓ Offering total solution for Water and Water Environment
- ✓ No.1 share in Japan domestic Water Supply Consultancy market
- ✓ Business experiences in over 50 countries

Our Business Field

- ✓ Project Appraisal and evaluation
- ✓ Master Plan
- ✓ Feasibility Study
- ✓ Preliminary & Detailed Design
- \checkmark Construction Supervision
- ✓ Training for Plant Operation & Maintenance
- ✓ Training for Technology Transfer
- ✓ Review of Existing Management Organization and Practices
- ✓ Environmental Impact Assessment
- ✓ Water Quality Analysis & Assessment
- ✓ Pollution Control Programs
- ✓ Leakage & NRW control Programs
- ✓ Data Mapping & GIS
- ✓ Asset Management

Research Framework

 Collaborative research between NSC and University of Peradeniya for Water and Environment

Background

- Emerging Water Environment Issues in Sri Lanka
 - Eutrophication, Agrochemicals
 - Water-related Diseases
 - Incidents by Wastewater Pollutions
 - Leachate from
 Waste Disposal Site

- Countermeasures to secure Safe Drinking Water
 - Water Safety Plan
 - Unknown likelihood and Significance of Risks
 - Need stakeholders involvement to control

Background and Objective

Modeling and Simulation Approach

Merits	Problems
 Prospective Approach: Give scientific verification to policies, Evaluate Countermeasures Accountability: Show visually to explain to the public 	 Input / Verification data are not always available Ad-hoc, Not replicable by practitioners

- Objectives
 - Review water resources problems from actual water safety plan
 - To establish the simulation model to evaluate the risks at water safety under limited resource conditions

C Copyright Nihon Suido Consultants Co., Ltd.	7	Nihon Suido Consultants Co., Lte
---	---	----------------------------------

Study Area: Mahaweli River Basin near Kandy

Greater Kandy WTP: 72,000 m3/day (Phase II, by 2014) Population Served: 400,000

WSP: formulated on July 2014

Research Flow

Review of Greater Kandy Water Safety Plan (1)

• "Very High" Risk Incidents focused at Source

Location / Process step	Hazardous event	Hazard type
Source	Pathogenic contamination from septic tanks and waste from Kandy city through Middle canal (Meda-Ela)	Physical/Chemical/micr obiological
Source	Leachate from Kandy city garbage dumping site entering intake	Physical/Chemical/mic robiological
Source	Pollution by agrochemicals during spraying season	Chemical
Distribution chamber	Power failure at WTP	Chemical & Microbial
Service reservoirs	Unauthorized personnel entering premises	Chemical & Microbial
Pipe network	Contamination of treated water	Microbial

Review of Greater Kandy Water Safety Plan (2)

- Hazard identified at source (catchment)
 - WTP is near to Solid Waste Dumping Site at Gohagoda
 - There is some possibility for contamination from back flow of the Mahaweli River
 - Major concern but difficult to evaluate its significance

C Copyright Nihon Suido Consultants Co., Ltd.

11

Nihon Suido Consultants Co., Ltd.

Methods(1) : Overall Model Framework

C Copyright Nihon Suido Consultants Co., Ltd.

Methods(2) : Catchment Model

C Copyright Nihon Suido Consultants Co., Ltd.

I Nihon Suido Consultants Co., Ltd.

Methods(4) : Detail of Reservoir Model

Hydraulic Model

- Flow velocity in flow and vertical direction
- ➤ Water level (water volume)
- ► Density Equation for Continuity $\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} = 0$ Equation for Conservation of Momentum $\frac{\partial \overline{u}}{\partial t} + \frac{\partial}{\partial x} (\overline{u}\overline{u}) + \frac{\partial}{\partial y} (\overline{u}\overline{v}) = -\frac{\partial}{\partial x} (\frac{P}{\rho}) + \frac{\partial}{\partial x} (A_x \frac{\partial \overline{u}}{\partial x}) + \frac{\partial}{\partial y} (A_y \frac{\partial \overline{u}}{\partial y})$ $\frac{\partial P}{\partial y} = -\rho g \quad \text{(Assumption of hydrostatic pressure distribution)}$ @ Copyright Nitron Suido Consultants Co., Ltd.

Methods(5) : Detail of Reservoir Model

C Copyright Nihon Suido Consultants Co., Ltd.

Nihon Suido Consultants Co., Ltd.

Methods (5): Scoping Target Water Quality Indicators

- Background Water Quality ¹⁾
 Cd (3.9-21.5 µg/L)
- Heavy Metals in Leachate ²⁾
 - Cr, Fe, Ni, As, Cd, Se, **Pb**
- Other Substances in Leachate ³⁾
 Mn, PO₄³⁻

Bandara et al., 2010
 Sewanndi et al, 2012
 Dharmarathne and Gunatilake, 2013

 \Rightarrow Pb in leachate is higher than other substances.

Pb was selected as <u>model indicator</u> for simulation in this study.

© Copyright Nihon Suido Consultants Co., Ltd.

Nihon Suido Consultants Co., Ltd.

Required Input Data for Boundary Conditions

Items	This Study	Source
Catchment Framework	~	
River Profile	v	Provided by Uni.
Hydrology(Precipitation / Flow Volume)	~	Provided by Uni.
Water Quality	✓	Literature
Meteorology	✓	Literature
Dimension of Dam	~	
Operation Rule of Dam / Barrage		

Topographical Condition (River Profile)

Polgolla Reservoir with total length of 7.5 km was divided into meshes at intervals of 0.5 km in flow direction and 1.0 m in vertical direction

C Copyright Nihon Suido Consultants Co., Ltd.

19

Nihon Suido Consultants Co.. Ltd.

Hydrological Condition

Inflow condition for Polgolla Reservoir was set according to the actual record of inflow volume in year 2014.

Hydrological condition in 2014 corresponds to dry year in recent 7 years.

20

Meteorological Condition

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temp(°C)	23.4	24.2	25.5	26.1	25.7	25.0	24.7	24.7	24.7	24.6	24.4	23.7
solar radiation (W/m2)	371	386	406	416	408	393	387	396	409	412	398	378
relative humidity(%)	83.8	79.0	76.5	82.5	83.5	83.4	82.0	81.0	81.2	85.2	87.8	86.8
wind speed(m/s)	0.8	0.6	0.3	0.2	0.8	1.0	1.0	1.0	1.0	0.5	0.8	0.8
cloud amount(-)	0.48	0.42	0.47	0.58	0.71	0.72	0.74	0.73	0.77	0.72	0.66	0.58

Meteorological Condition is required to calculate water temperature for sunshine and heat balance in water surface in reservoir

C Copyright Nihon Suido Consultants Co., Ltd.

21

Nihon Suido Consultants Co., Ltd.

Water Quality Condition

	①Inflow from Kandy Lake	②Inflow from Mahaweli River	③Leachate from Gohagoda Damping Site			
Catchment	255	1063	0.06			
Area (km²)	200	1000	0.00			
Discharge	12.1	54.6	0.006			
Volume (m³/s)	13.1	54.0	0.000			
COD (mg/L)	22.4	8.0	700			
T-N (mg/L)	5.9	1.9	700			
T-P (mg/L)	1.1	0.4	8.0			
Pb (mg/L)	0.005	0.005	12.9			
Zn (mg/L)	0.145	0.145	700			

Water quality condition was set according to discharged water quality calculated through the catchment model.

Concentration of Pb was set according to the observed data.

Interface of Simulation Model

9-1	171	1 14	10.10	Dill 12	-						Polgol	e_hput.v	5 [SAE-)] - Microsoft	Excel									0	161
	101	80	MA		1707 BD	10.000	0.08		1 March	THE MONTH OF					THE .		12			Ten.	12	x -1 x	SUM - A	7 40	0 10 1
1 2	172-							_		Preview (#101 D 11	-		1925	100	10.0	_			-		2 245			
1	181	202-	/Morts		1 U - E -	·	7. ¥.		1.04.04	Moreau	LCORME -	-	8.4.138	21 BL.	豊式設定・	-				50	1 1	2,717	20	ホー・道沢・	
: 21	117#	- Ť.			295	dh.				183			10 H			3966					世治.		16.5		
	025		*		f.																				
A	0	0	D	. 6	P	G.	H.	1	J	K	- b	M	N	0	p	0	A	. 5		T	U	V	W	Х	1
TLA	1.145	STDA	Y.J. H		INPLOW	and a	dimine (diam'r	SUM	COTFLOW	allow a	and in the second	A	SUM											
201	6		12	440.7	4 17555	1.042	0.00008	0.000	19,437	0.000	18.237	1.000	0100	19.437											
201	6	1.1	12	440.7	4 17595	1.642	0.000015	0.000	19 431	0.000	18.337	1.000	0100	19437											
201	6	1.1	1.12	440.7	4 17595	1 842	0.00088	0.000	19.43	0.000	18,337	1 000	0100	19.437											
201	6	1 4	12	440.7	4 17595	1842	0.00088	0.000	19.437	0.000	18,337	1 000	0100	19.437	600	shike sume	In the sector of	-	-	ALC: NO		PROFIL PAR	the states	- Incalded	- 11
201	6	1.1	5 12	440.7	4 17.595	1 842	0.00088	0,000	19.431	0.000	18.337	1.000	0100	19.437	a c	***** SHOE,	ann Mag	12321	*00°.3-	2.024	ersour	194411, 3018		C	-
201	6	1. (12	440.7	4 17,595	1.842	0.00088	0,000	19.437	0.000	18.337	1,000	0100	19.437	201	E 2 19 1	2 440.	14 201	25.1		4.73	5,11			
201	6	1 1	12	440.7	4 17,595	1.842	0.00088	0.000	19.43	0.000	18 337	1.000	0100	19.437	201	5 2 20 1	440.	4 0.	25.1	45	4.75	2,07			
201	6	1.1	12	440.7	4 17595	1.842	0.00068	0.000	19.437	0.000	18.337	1.000	0100	19.437	201	5 2 21 1	440.	22.2	25.1	1.5	74	2,03			
201	0	11	12	440.7	4 17595	1.842	0.00068	0.000	19.433	0.000	18337	1.000	0100	19.437	- 1 34	6 2 22 11	440,		22.1	43	4.73	5,00			
201	0	1, 10	12	440.7	4 17595	1.842	0.00088	0.000	19.43	0.000	18337	1.000	0100	19.437	- 1 5%	0 2 23 11	440,	같 문서	20.1		4.71	4,20			
201	0		12	440.7	4 17.505	1 842	0.00088	0.000	19.43	0.000	18337	1.000	0100	19.437	- 1.6%	0 2 24 1	2 440	10 10 10	20.1	1.1	4,71	4,00			
201	<u>.</u>	1.14	14	440.7	4/ 17000 1/2000	1.042	0.00088	0.000	10.43	0.000	10.337	1.000	0100	10437	201	8 2 38 1	2 440	74 35 3	25 1	- 11	1 69	4 92			
201			1.10	440.7	4 17565	1.042	0.000000	0.000	10.427	0000	10.337	1.000	0100	10437	201	R 2 07 1	440	74 55 5	25.1	1.1	1.69	4 97			
204	6			440.7	4 17805	1.642	0.000008	0.000	10 433	0.000	18 337	1.000	0100	10.437	201	6 2 28 1	440	74 25 1	25.1		1 4 69	5.02			
201	6	1 1/	1.12	4407	4 17595	1.647	0.00068	0.000	19.497	0.000	18337	1.000	0100	10437	201	6 2 29 1	440.	14 25.1	25.1		4.71	5.10			
201	6	1 11	12	440.7	4 17595	1.842	0.00088	0.000	19.431	0.000	18337	1.000	0100	19.437	201			74 26.1	25.2		4,58				
201	6	1 18	1 12	440.7	4. 17595	1 842	0.00068	0.000	19.437	0.000	18337	1.000	0100	19.437	201			15 26.5	25.2	7.6	4,14	4,93			
201	6	1 11	12	440.7	4 17595	1 842	0.00068	0.000	19,437	0.000	18337	1 000	0100	10,437	201	6 3 3 1		15 26.1	25.3	7.5	3,17				
201	6	1 20	12	440.7	4. 17505	1.842	0.00088	0.000	19,437	0.000	18.337	1.000	0100	19.437	201	6 3 4 1	2 440.	75 26.5	25.4	7.5	2 2.27	3,90			
201	6	1 21	12	440.7	4 17505	1.842	0.000088	0.000	19.433	0.000	18.337	1.000	0100	19:437	201	6 3 5 1	2 440.	15 27.1	25.6	7.5	1.41	3,97			
201	6	1 23	12	440.7	4 17.505	1.842	0.00088	0.000	19.431	0.000	18,337	1.000	0100	19.437	201	6 3 6 1	2 440.	15 27.0	25.8	7.3	1.53	4.64			
201	0	1 23	1 12	440.7	4 17.505	1.842	0.00008	0.000	19.43	0.000	18,337	1.000	0100	19.437	- 20	6 3 7 1	2 440.	15 ZI.	25.8	4.3	2.53	2.24			
201	0	1 24	12	440.7	4 17505	1.842	0.00008	0.000	19.43	0.000	18 337	1.000	0100	19.437	20	0 0 0 1	440.	13 2/+4 16 01 0	26.0	1.3	3.43	6.70			
201	0	1.2	12	440.7	4 17595	1.842	0.000088	0.000	19.437	0.000	18337	1.000	0100	19.437	20	e 2 10 11	440.	15 07 1	20.1	1.3	4.00	9.20			
102		1 21	16	4407	17.000	1.042	0.000088	0.000	19 43	0.000	18,337	1,000	0100	19:437	30	6 2 11 1	440	75 97	28.1		4 28	2 25			
201	6	1 24	1 12	440.7	4 17895	1.642	0.000085	0,000	19.437	0.000	18 337	1.000	0100	10.437	201	6 3 12 1	2 440	75 27 3	26.1	7.2	4.28	9.83			
201	6	1 25	1 12	4407	4 17585	1.642	0.00066	0.000	19 430	0.000	18 337	1.000	0100	18437	201	6 3 13 1	440.	75 27.5	26.1	7.4	4.28	11.46			
201	6	1 30	1 12	440.7	4 17595	1 842	0.00088	0.000	19.437	0.000	18337	1.000	0100	19.437											
201	6	1 31	12	440.7	4 17.595	1 842	0.00088	0.000	19.437	0.000	18 337	1.000	0100	19.437	-	_	_			_	_	_		_	-
201	6	2 1	12	440.7	4 17.618	1.844	0.00089	0.000	19,463	0.000	18,363	1.000	0100	19.463											
201	6	2 1	12	440.7	4 17.618	1 844	0.00089	0.000	19.453	0.000	18.363	1,000	0100	19.463											
201	6	2.1	12	440.7	4 17.618	1.844	0.00089	0.000	19.463	0.000	18.363	1.000	0100	19.463											
201	6	Z 4	12	440.7	4 17.618	1 844	0.00069	0.000	19.463	0.000	18.363	1.000	0100	19.463											
201	6	2.1	12	440.7	4 17.618	1.844	0.00069	0.000	19,465	0.000	18.363	1.000	0100	19.463											
201	0	2.4	12	440.7	4 17.618	1.844	0.00069	0.000	19,463	0.000	18.363	1 000	0100	19.463											
201	0		12	440.7	4 17618	1.844	0.00069	0.000	19,463	0.000	18 363	1,000	0100	19.463											
201	6	1.1	10	440.7	4 17610	1 844	0,000000	0.000	10.46	0,000	10.303	1.000	0100	10.403											
201	×	1.1	-	+ and 1	02 mil 02 mil			0.000		5000	10.000		0100	10,402											-

The Simulation Model can configure input and output data on Microsoft Excel interface.

Users can easy to handle the simulation model (e.g. change of input data and evaluation of simulation results).

C Copyright Nihon Suido Consultants Co., Ltd.

23

Nihon Suido Consultants Co., Ltd.

Results(1): Simulation Results for Reservoir

• Water temperature; between surface and bottom layer is different due to sunshine and low flow volume especially in dry season.

Results(2): Simulation Results for Reservoir

• Flow Velocity: Difference in temperature makes density flow (Fair current in middle layer and backflow in surface and bottom layer).

© Copyright Nihon Suido Consultants Co., Ltd.	25	Nihon Suido Consultants Co., Ltd.

Results(3): Simulation Results for Intake Water Quality

• **Backflow:** Substances in Leachate could flow back to upstream by approx. 2 km due to density flow.

Results(4): Simulation Results for Intake Water Quality

· Seasonal variation: variation exists but not significant

C Copyright Nihon Suido Consultants Co., Ltd.

27

Nihon Suido Consultants Co., Ltd.

Results(5): Control Measure Identification

Case	Control Measure
Case 01	Installation of fence in bottom layer
Case 02	Raw water Intake from surface layer

Case 01:

Pb increased due to retention at bottom layer.

Case 02:

Pb decreased, while Chl-a increase especially in dry season due to growth of phytoplankton.

Results(6): Control Measure Identification

As for Case 01, due to installation of fence, contaminated substances stay longer in bottom layer at intake and intake water quality of Pb increase.

© Copyright Nihon Suido Consultants Co., Ltd. 29 Inihon Suido Consultants Co., Ltd.

Results(7): Control Measure Identification

As for Case 02, intake water quality of Pb decrease by intake from surface.

C Copyright Nihon Suido Consultants Co., Ltd.

Results(8): Control Measure Identification

As for Case 02, intake of Chl-a increase especially in dry season due to growth of phytoplankton in surface.

```
© Copyright Nihon Suido Consultants Co., Ltd. 31
```

Discussion: Model Flow of Simulation Application to WSP

C Copyright Nihon Suido Consultants Co., Ltd.

Conclusion (1)

- Water Safety Plan of Greater Kandy WTP indicated water source issues are identified as "Very High" risk because of **unavailability of observed data**.
- Water Quality Simulation model for Pollgolla Reservoir implied that;
 - Leachate contamination may flow back by 2km due to density flow*.
 - As countermeasure, fences at Intake (Case 01) may have adverse impact on water quality and Intake at surface (Case 02) is effective

while Chl-a (phytoplankton) concern remains.

	* Modeled subs	tance (Pb) is below WHO guideline value
© Copyright Nihon Suido Consultants Co., Ltd.	33	Nihon Suido Consultants Co., Ltd.

Conclusion (2)

- In this research, we could not reach quantitative rerisk assessment utilizing the results because the concentration of modelled substances (Pb) did not go beyond the WHO guideline level.
- More research is needed for identifying the possible harmful substances such as agro-chemicals, carcinogenic substances and other unknown substances.
- Application of water quality simulation model for water safety is effective to manage raw water quality and figure out likelihood and significance of risks for incidents.

Recommendations

- Utilize simulation approach for public communication and policy making
 - Visualization for communicating with stakeholders
 - Acceleration for Proactive Measures
- Establish replicable simulation models/workflows considering limited resources
 - Data Availability is the Key Factor
 - Improvement of usability is necessary
- Monitoring
 - Data Collection and Communication among institutions
 - Find Feasible, Expandable and Continuous methods

C Copyright Nihon Suido Consultants Co., Ltd.

35

Mihon Suido Consultants Co., Ltd.